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Evaluation of entrainment of a nonlinear neural oscillator to white noise
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The Lyapunov exponent for a one-dimensional neural oscillator model, the theta neuron, is computed for
white noise forcing, using the steady-state solution to the associated Fokker-Planck equation. The latter is
mildly singular, due to the nature of the multiplicative input. In agreement with previous results with similar
models, the exponent is negative for all forcing amplitudes, but here it is shown to be small, relative to that for
periodic drive, in a range of forcing strengths. Thus the synchronization of an ensemble of independent neurons
receiving common but random input can be slow. Moreover, this implies that aperiodic input may be subop-
timal, in some contexts, for preserving the reliability of fine spike timing, a potentially important component of
the neural “code.”
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I. INTRODUCTION have been observed in cortical sli¢&$. Thus, reports of the
generality of aperiodic response reliability, while not incor-

Cortical neuronsn vivo receive thousands of synaptic in- rect, may overstate the importance of this result to biophysi-
puts, the sum of which resembles a white or low-pass filtere@al function, and miss frequency dependent mechanisms that
“noise” input [1-3]. It is now well established that neurons could affect reliable responses in functional networks
can entrain to such inputs, in the sense that, if an identicd®,11,13. A better understanding of the interaction between
realization of the input is repeatedly applied, the resultanthe input spectrum and the neural kinetics depends in part on
neural output(spike trains or membrane potential time se-duantitative comparisons of the efficacy of different inputs,
ries) is nearly identical from trial to tria]3—9]. The degree including broadband and rhythmic signals, in driving reliable
of similarity between trials, specifically in the timing of ac- responses.

tion potentials, is called the spike tinteliability. Due to ~ This paper determines the rate of ensemble synchroniza-
intrinsic (e.g., channelnoise, reliability is typically poor in tion, via the Lyapunov exponefitE), for a one-dimensional
the absence of input fluctuatiofi3,7,10. neural oscillator model with broadband input. The exponent

In most theoretical investigations of reliability, each trial iS always nonpositive, in agreement with previous studies,
is modeled as the response of a different neuron in an urfut can be small compared to that for periodic forcing. Thus
coupled ensemble of identical neurons receiving a global inin Some regimes input coherence may be important to induce
put[11-15. The ensemble evolves in a comm@mnauto-  reliable spike timing.
nomoug phase space, and reliable firing is equivalent to
s_ynchronization of the ensemble. It has begn grgged that re- Il. THE THETA NEURON
liable spike responses to broadband “aperiodic” inputs are
generic, in both excitable and oscillatory neuron models, and The theta neuron equation,
do not depend on the fine details of the driving signal or the
neural kinetic§12,15,18. Indeed, under fairly mild assump- do
tions, all one-dimensional stochastic differential equations azl—cos{&)+[1+cos{0)]lapp (1)
are stable in the sense of having a negative Lyapunov expo-
nent([17], Sec. 9.2.2 which suggests that the solutions typi-
cally converge asymptotically to a small number of distinctis @ normal form for a saddle node on a circle bifurcation, to
solutions[12]. A similar result has been found numerically in Which a large class of conductance based neural masels
two dimensions, although a small subset of parameters led @alled type ) can be reducefll8-20. 6 represents the phase
chaotic behaviof15]. of the voltage and conductance trajectory during a single

However, for neural oscillators it is well known that pe- spike cycle, and,,, which is assumed small but not neces-
riodic inputs must be tuned to appropriate frequencies fosarily constant, is the total inpdié.g., synaptigcurrent. By
entrainmenthence reliability to occur. Further{7,9] show,  construction, the neuron “spikes” wheneveér=m. When
both in experiments oAplysiamotoneurons and simulations |.,,>0 the neuron is oscillatory, with periog/ 1 5, (When
of an integrate and fire model, that reliability under a broadd ,, is constant Otherwise the neuron is excitable, with a
band input can be substantially reduced when that input istable/unstable pair of fixed points around the or{difl].
notch filtered around the oscillator frequency, a behavior For our purposes, two important physiological properties
they termedreliability resonance Importantly, the effect of captured in the model ar@ nonuniform motion, consisting
reliability resonance is amplitude dependent. Similar result®f slow motion aroundd=0 and fast spiking a® passes

throughs, and(ii) a decreasing influence of the input as the
neuron reaches the spikat 6= =, the term including
*Electronic address: jritt@mit.edu equals zerp This latter behavior corresponds to the physical
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notion that, during a spike, the high conductance of the spikapproach is standafd 7,22, the singular point of E¢(5) at

ing currents completely overwhelms the inpu8,19. the spike introduces some modifications. In the next section
This paper focuses on the oscillatory regime. The oscillawe compute the LE using.

tory theta neuron is similar to the active rotator model To find the steady state, consider

[12,21]; a key difference is the multiplicative input, which

captures the substantially reduced input efficacy during the

high conductance state of the spike. We imagine a cell re- 0=- do

ceiving a mixture of excitatory and inhibitory synaptic cur-

rents, with a net depolarizing effect leading to oscillation, 5 the open interval=(— ,) on which the equation is

i.e., I pphas a positive meafin typical experiment$3,7,9,  nonsingular, along with the condition§) lim, .__p(6)

a fluctuating current rldlng a positive dc bias is injected by:lime_,wp(ﬂ) and (i) f,p=1. The first(boundary condi-

an electrodg In the idealized limit of a large number of {jon restricts us to periodic solutions, and the second normal-

independent but smooth synaptic currd$], 1 ,,,becomes ;a5 the solution to a probability density.

“white forcing,” interpreted in the sense of Stratonovich Integrating once yields

[22]. The input is thudl 4p,=U+ o°dW whereu>0 is the

mean,dW is the(Stratonovich white noise differential, and g® dp
o is the forcing amplitude. Equation 1 becomes the stochas- 2 @Jr
tic differential equationSDE)

Loy 1d? 6
+599'|p +§d—02{9 p} (6)

1
599’—f)p=c (7)

with C to be determined. We defirfe (on |) via

do="f(0)dt+g(0)odW, (2
0 2f 2 0\ 1 0

where F(H)Ef Z(W)dﬂz —ztar<§ §tanz 5 +u

f(6)=1—cog 0)+[1+cog 6)]u, (33 0 g%(n) o

9(0)=[1+cog 0)]o (3b) and the integrating factor as
i . _ . . 1

We define thenatural periodas Ty==/+/u, i.e., the period w(6)= exd —F(6)]. ®
wheno=0. g(0)

We will utilize the probability density(6,t) of oscillator ) _ ) )
phases, which is governed by the Fokker-Planck equation. IRirect calculation shows that E¢?) is equivalent to
the steady statey gives the distribution both over all initial

phases and over all realizations of the input. Information i[ 9_2 ]:C .

about the distribution of solutions with different initial con- do | 2P Ho

ditions but forced by the same realization of the input is then

derived from the Lyapunov exponefgee below [17]. To  hence

find the Fokker-Planck equation asisociated with @y 1t is %(0) )

first necessary to write the SDE in Iform [22], () 5 P(G)ZUPOJFCJO w(7)dy. 9)

dt+g(6)dw, 4

1
de=(f(0)+ Eg(a)g (6) Above we usedu(0)=1/(20), g(0)=20, and the defini-

) o ) o . tion p(0)=py. C andp, are not independent for the solution
where the prime indicates differentiation with respectffo  to satisfy the boundary condition. Suppose for the remainder
and the stochastic differentidlW is of Ito type. The corre- that Po is fixed (at an as yet unknown value such that the

sponding Fokker-Plank equation is thi?] solution has unit aréait remains to determine the corre-
5 5 1 v spondingC.
p / Under the change of variables=tan(6/2) on —7w<#
-5 T390 ol 45l ) g (¢/2) on =
at a0 2 2 9p2 <, EqQ.(8) becomes
Under general condition@ncluding c>0) every solution of - 22+1 2 (1,
this second order parabolic equation tends to a unique steady m(z)= 20 expg — 57 §Z +u (10
state, given by settingp/dt=0. Note, however, that the 7

equation is mildly singulafg(=)=0] due to the spike ) ) ~
nonlinearity. on —ow<z<w, Clearly, lim,_,__u=Ilim,, ,u=« and
limy_, ;u=lim,_ . u=0. This latter limit further implies that
1. LYAPUNOV EXPONENT the integral ofu converges at the right end of the interval, so

we define
A. The Fokker-Plank steady state

Wg first derive an integral expressjon for t_he steady-state J w(n)dp=M>0. (12)
solution p to the Fokker-Plank equation. While the general 0
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Now consider the limiy— 7 in the solution Eq(9). Assum- t t
ing thatp is bounded, the left hand side goes to zero, which |”|v(t)|:|”|vo|+f f’(ﬁ(S))dSJrJ g’ (6(s))°dW;
is a direct consequence of the spike singularity. Therefore for 0 0
the equation to hold on all dfit is necessary that t 1
=|n|vo|+fo f’(0(5))+59(0(3))9"(0(5)))ds
c=-2P (12

t
+J g’ (6(s))dWs. (16)
0

and the only bounded steady-state solutionl @
The second equality is the conversion from the Stratonovich

w (cdW) to the Ito (dW) integral[22]. The average of the final
200 L m(m)dn Ito integral is zero ag’ is bounded. Thus, using ergodicity
p(0)= . —m<6<. (13 of the system to equate the time average of the first integral
M g%(6)u(0) with integration against the steady-statgs), the LE satis-
fies[17]

In this expression, the integral limits have changed after sim-
plification using the definition oM. \ =|imEIn|v(t)|=fW (f’( )4& (03" (| o(md
Since the derivation so far has invoked only the bounded-""" "'t A 29 maim [ptman.

ness ofp, it should be checked that this solution in fact (17)
approaches finite values at the two end points, and that these
values are equal. For convenience, we rescale the solution &merical evaluation of this integral provides the I(&ee
r(6)=Mp(6)/(20p,) before taking the limits. Then from the Appendix for additional numerical details
Eqg. (13

IV. EFFECT OF FORCING AMPLITUDE

In the absence of forcing fluctuations;=0, the asyn-
chronous steady state is found directly from E@5) as
p(6)=Jul[wf(6)] (scaled so thap has unit integral By
The first equality uses the definition Bf after application of ~symmetry(or direct calculatiop Eq.(17) thus shows that the
L'Hopital’s rule, and the second is an explicit evaluation ofLE is zero. Indeed, since the neuron is oscillatory, any per-
the resulting limit. A similar calculation shows that turbation to the asynchronous density oscillates at the natural
lim,_ _,r(6)=1/4, so, in particulary(—)=r(a) in the period, indicating neutral stability.
limit. Returning to the original scaling, the definition

N

limr(@)=lim =
00— 0—>7ng,_2f

A. LE for sinusoidal forcing

p(_w)zﬂzp(ﬂ.) (14) To provide a baseline for comparison wher»0, we
2M numerically compute the LE for an ensemble entrained to
sinusoidal forcing at the natural peridqtb our knowledge
along with Eq.(13) yields a continuous, 2-periodic solu-  this has not been reported analytically, although it is closely
tion to the Fokker-Planck equation. related to the well-understood Hill equatiph8]). Consider
As an aside, sincé=  is the condition for the neuronto Eq. (1) with |=u+ o2 sin(2at/Ty), where Ty is the
emit a spike, Eq(14) also gives the steady-state mean spikenatural period. The factof2 normalizes the input variance

rate of the neuron, althoug¥l andp, depend nontrivially on  to be o®. As above, the solution to the linearization of Eq.
uando. Recently, Lindneet al.[20] used first passage time (1) abouté(t) is

arguments to calculate the mean and coefficient of variation
(the standard deviation divided by the mgani the inter-
spike interval distribution for this model. Future work com-
bining these alternative expressions of the spike rate could

simpl_ify the analytic representation of the steady-state phaﬁﬁhere?(e,t)z[l—Iapp(t)]sin(e). Suppose(t) is the stable
density. 1:1 phase-locked solution. Then, using periodicity, the LE is

Injv(t)|=In|ve|+ fOth(e(s),s)ds, (19

1 1 (Mw
Apztli_To?lnlv(t)|=T—Nf0 f(0(s),s)ds. (19

B. LE calculation

To find the Lyapunov exponefiillowing [17], p. 474 of
the stochastic forced theta neuron E2), consider its linear-

ization Figure 1(gray curvg shows\, computed across a range of
o. At first the LE decreases with increasimg indicating
dv=f"(0(t))vdt+g’ (6(t))vedW (15  Dpetter entrainment. For higher the LE returns to zero, the
1:1 solution loses stability, and more complicated locking
about a fixed solutiod(t). Thenv satisfies patterns occur. Note thadt, is strictly positive only foro
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LE \,, for a range of forcing strengths, shown in Fig. 1
(black curve. As expected, the exponent is negative, sug-
gesting solutions asymptotically approach each other, and is
monotonically decreasing, so that stronger forcing results in
faster(more stablg synchronization. However, as goes to
zero, the curve ol,, approaches tangentially to the axis,

so that synchronization is weak for a nontrivial range of forc-
ing amplitude.

0 ' 0.65 . 0.1 C. Comparison of forcing types

° The fair comparison of a sinusoid input with a white sig-

FIG. 1. The Lyapunov exponent for the theta model with sinu-nal is a subtle question. A usual control is to match the fluc-
soidal (\p, gray and white ¢, black inputs, as a function of  tuation power(time average of the squared input fluctua-
forcing amplitude. The mean input=0.01. tions) between different input types—9]. For a stationary

) ) process the power equals the variance around any fixed time
<,UI\/§”0'007' Above this value the forcing could be con- yoint. HoweversdW is a generalized process, and the vari-
sidered “strong,” as it transiently introduces fixed points in 3nce at each time point is infinite22]. Indeed, the term

the model, Eq(1). “white” denotes that the signal contains equabsitive) en-
ergy at all frequencies; since the power is equal to the inte-
gral of the spectrum, the power is also infinj22]. Thus,

For the white-forced theta neuron, the peak in the steadyalthough the white signal has an intensityit is not obvious
state densityp shifts to the left of the originFig. 2 aso  how this number should be scaled to compare to an input
increases, which we explain as follows. For increasing inputvith finite power.
fluctuation, the average frequency of the theta neuron in- Recall that white forcing arose as an idealization of a
creasegnot shown, as the white input assists the neuron inroadband input current due to the summation of many in-
escaping the slow region around the saddle node ghost at thiapendent inputs. In practice this input will be band limited
origin [23]. This in turn increases the probability flow past and of finite power. The approximation used here is valid
the spike ¢=m) and reinjects probability at negative.  \hen the highest frequency in the input signal is well above
This process is asymmetric, because the escape of a neurgiy fastest time scale of the system, and implicit in this ap-
in the interval[ —,0] can be significantly delayed by a nroach is a scaling that depends in a complicated way on the
more negative input, but a neuron that has begun to Sp'kgystem being stimulatef®,22,24. Through such a scaling,
will continue throughé= 7 independent of the input. Heu- we could compare the magnitude Bf(o) directly with a

ristically, most of the ensemble is “waiting” to get past the . . ~ . .
origin, and neurons that make it past the saddle node gho8tedified white forced LEA (o) =Ay(a0), wherea is sys-

almost immediately return to waiting, thereby shifting the t€m dependent. o _ _
density peak into the ‘repolarization” interval— a,0]. However, an important qualitative aspect of Fig. 1 persists

While a similar behavior has been inferred in phase model§nder any reasonable scale. In particular, because the slope
before[12], the author is not aware of a previous attempt toof Ay, approaches zero as—0, at small forcings we must
explain its cause. haveXW>)\p. Further, becausk,, is monotonically decreas-

For ¢ in [ —,0], the divergence of the SDE is negative ing but\, is not, we also have that, at sufficiently high
(that is,d/d6(d6/dt) <0). The shift of the ensemble density Xw<A\,. Thus there is an amplitude dependent transition be-

:Eus |n(:ucet§ a (I:Eontlrac_tlon 0; r:earby sqlutlilcnns. To ?“?gtiﬁfween greater reliability to periodic inpgat the natural fre-
e contraction, Eq(17) is used to numerically compute the quency for low o, and greater reliability to broadband input

. . . : : at higho, as measured by the LE. This behavior is especially
15 1 interesting in comparison with the experimental demonstra-
tion of resonance reliabilitithat is, frequency dependence of
reliability) only for a range of forcing amplituddg,9].

We note that for high-amplitude white forcing, coherent
oscillations are lost and the neuron approaches a refractory
Poisson processunpublished; see alsf20,25]). For ex-
ample, at the highest in Fig. 1, 0=0.1, the coefficient of
variation of the interspike interval distribution is approxi-
mately 0.5, indicating fairly irregular spike timing. The plot-

-3 -15 g 15 3 ted range ofr extends into “strong” white forcing20] (and
strong sinusoidal forcing, given the loss of stability of 1:1

FIG. 2. Steady-state densitigs for =0 (black), 0.1 (light  entrainment and the two LE curves should be qualitatively

gray), and 0.3(dark gray. The mean inputi=0.01. comparable.

B. LE for white forcing

Density p
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1 ] The dark gray curve of Fig. 3, bottom, shows the en-
: semble average when the forcing is replaced by a sinusoid
05 1 with periodT/0.87, chosen to lie just outside the 1:1 Arnold
5 1 tongue. Individual solutions are quasiperiodic, and the en-
R 1 semble average shows beating. Thus, although there are short
' T time epochs in which the ensemble is nearly clustée=gd.,
=05 ] around t=150), further input disrupts these clusters and
UUUUJUUUUUUL there is no asymptotic approach to a common solution.
i it White forcing shows a combination of these behaviors. At
0 100 200 300 400 500 . . . . .
this forcing amplitude, changes in relative phase are not ap-
Ut parent in individual neuron@ig. 3, middle. Some tendency
toward clustering is visible in the ensemlgfeg. 3, bottom,
05 black curve, and since the LE is negative, the ensemble will
s eventually approach a common solutiontase~. However,
$ 0 it does so in a biased random walk fashion, with epochs of
increased clusteringe.g., around=300) interspersed with
05 epochs of desynchronizatiofe.g., aroundt=450). A de-
Uﬂ UL w m’ tailed examination of the synchronization dynamics shows
1 Pt e S e that the negativity of the LE is due to rare but highly syn-
0 L chronizing epochs outweighing a smaller unbiased walk in
T T T A the level of synchronizatiofil3]. This behavior is similar to
that observed in phase oscillators driven by a sinusoidal in-
05 1 put with slow, random frequency modulati¢phl]. The im-
A portant observation is that the nervous system often operates
g 0 1 on time scales of a few spikes, so that, independent of the
v 1 LE, the fluctuation in the degree of synchronization could
-0.5 : also be functionally relevant. In contrast to the monotone
: approach to synchrony under sinusoidal input, white forcing
o | I il et Al can in fact desynchronize the ensemble on short time scales.

0 100 200 300 4(.)0 500
Time V. CONCLUSION

FIG. 3. Top. Two example solutions, with near-antiphase initial Motivated by the bhenomenon of neural response reliabil-
conditions, of the theta neuron weakly forced by a sinusoid at the v Y P u P 1abl

natural frequency. Middle. The same but with a single realization oi’ty’ we havg modeled a simple neu_ra}l oscillator forced by a
white forcing. Bottom. Ensemble average of 50 solutions starting?’0@dband input. We have not explicitly modeled the reduc-
from an asynchronousplay state, for three different inputs: white 10N in reliability from intrinsic noise, e.g., due to ion chan-
forcing (black), sinusoid at the natural pericEy (light gray), and nel fluctuationd 10,16. We instead focused on the dynami-

sinusoid with periodry/0.87 (dark gray. Solutions were computed Cal stability of the nonautonomous neuron with input, and
via the Euler method for Eq(l) or Eq. (4) with u=0.01, o expect synchronization to persist under small intrinsic noise.

=0.0025, and time steft=10"%. However, because the effect of noise can be state dependent
[10], the extension of our analysis to models with intrinsic
noise could reveal interesting behaviors.

As a further example of the greater efficacy of sinusoidal As in the case of scalar equations on the real ({4€], p.
forcing at low amplitudes, Fig. 3 demonstrates the neurai73) and additive noise on the circlgl7], p. 398, [12],
response to three different forcing regimes, withh  white forcing here induces a negative LE, and thus almost all
=0.0025. To make the spike times more apparent, we plotsolutions should converge asymptotically[12], a Poincare
—cog d(t)] for each neurof25]; this function is near—1 map is used to show directly that the negative LE leads to
around rest ¢=0), and is+1 at the spike = ). Figure  synchronization in an active rotator with additive white forc-
3, top, shows two neurons with near-antiphase initial condiing. An almost identical argument holds for the theta neuron
tions receiving a common sinusoid input at the natural fredn this paper. Howevef12] relied on general results {i17]
guency(as in Sec. IV A. They quickly approach a common without actually determining the steady-state phase distribu-
solution. The light gray curve in Fig. 3, bottom, shows thetion, the magnitude of the LE, or the time course of synchro-
ensemble average over 50 neurons with asynchronous initigization for reasonable forcing amplitudes. By calculating
conditions. For an asynchronous ensemble the average istlae steady-state distribution to get a semianalytic expression
constant,( —cos())~—0.82 (the mean value of-cog¢(t)]  for the LE, it is shown here that the LE remains small, rela-
for a single unforced oscillathrHowever, under the forcing tive to periodic input, for a range of amplitudes. Thus, al-
the ensemble average quickly approaches the wave form ofthough the system may ultimately synchronize under white
single solution, showing synchronization of the entire en-forcing, it may take a physiologically untenable amount of
semble. time to do so, and other inputs may be more effective. In

D. Time evolution of synchronization
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particular, for low forcing strengths the spectrum of the inputalthough the final value gb may be small, the intermediate
may dominate entrainment behav(at9]. steps are numerically out of machine ramtiee problem per-
Periodic inputs at frequencies not harmonically related tcsists under the change of coordinatestan(6/2)]. It is
the natural period result in transient and partial clustering okasier to numerically solve the first order differential equa-
an initially asynchronous ensembias in Fig. 3, bottom, tion Eq. (7), but C must be chosen correctly for this first
dark gray; this is the ensemble level manifestation of the order solution to match the boundary conditions of the origi-
classical result that individual solutions are quasiperiodic anahal second order problem E@). The crucial observation is
neutrally stable. In this case, even small intrinsic noise wouldhat C was determine@iEq. (12)] during the derivation of the
accumulate and lead to unreliable spike tinj@6]. Even  analytic solution, and moreover can be calculated directly
when solutions are entrained, an argument for the importancieom the theta neuron vector fieldo getM) and the arbi-
of aperiodicity in inducing reliable responses is that highertrary choice of scaling,= 1. After a solution is computed it
order locking in periodically forced systems can obstruct encan be normalized to have unit integral.
semble synchronizatiofil4,16. For example, under stable M= [T u is numerically evaluated first, to high precision
2:1 phase locking, an initially asynchronous ensemble splitgnote thatu goes rapidly to zero for positive). We then
into two clusters, separated in time by one input period. Al-rearrange Eq(7) as
though information about the input is preserved at the popu-
lation level, the spike times for a single neuron depend on dp 2 1 dg opo opo
initial conditions (and on noise mediated jumps between ﬁz—zu —59@) —V}EG(G)(A(@P—V)
clusters and hence are unreliabJé6]. However, especially 9 (A1)
for low forcing strengths, the most common form of phase
locking is 1:1, in which multiple clusters do not exist. In on|=(— s, 7). SinceG(8)A(6)>0 for u, o, and @ of in-
higher-dimensional models, moreover, even aperiodic inputerest, integration of EA1) is stable when integrated back-
can lead to multiple clusteringunpublished; and, e.g., the \ard (decreasing). The prefactoG goes rapidly to infinity
bistable regime of15]), a behavior that is observed experi- at poth edges of the interval, making even the backward
mentally [3,4]. A full understanding of reliability requires (staple integration ill posed for most numerical solvers.
conditions not only on the input, but also on the dynamicaljowever, whenG is large, p is approximately equal to the
details of the neural model. This includes an examination ofgepraic value obtained by setting the parenthetical term on
the temporal fluctuation in reliability, as is observed for bothine right hand side of EqA1) to zero @p/dé is of order 1.
anharmonic sinusoidal forcing and white forciigg. 3, bot- We thus splitl into “inner” and “outer” intervals, by
tom; see als§13]). choosing a positive valué* for which G(6*)>1 [specifi-
In other work with the theta neuron model, we found thatcq)ly G(g*)=10G(0)=5/02]. The inner regionl;, is de-
broadband inputs filtered at the natural frequency do not profineq by |6/ < 6*, and the outer regioh,, is the comple-

duce reliable spiking13], in more direct correspondence t0 meant. Onl ., Eq. (A1) yields the approximation
the results of7,9]. As shown in this paper by the comparison outr

of broadband with periodic inputs, temporal structure in the opo
input can be a major determinant of reliability for systems p(0)= - .
with a defined time scalé.g., the oscillation period MLT(6)—g(6)g’(6)/2]

Note that this expression agrees with the earlier determined
ACKNOWLEDGMENTS values Eq(14) at the end points. We numerically integrated

The author thanks Nancy Kopell, Bard Ermentrout, Johnth*e ordinilry differential equation E¢A1) backward from
Rinzel, Mark Andermann, and Margaret Beck for spirited ¢ 1© — 6", using the starting value given by the outer ap-
discussions and helpful comments. The author was supportdoximation. As a self-consistency check, the integrated so-
by the Burroughs-Wellcome Fund Program in Mathematicalution (before normalizationshould agree both witpo=1

and Computational Neuroscience at Boston University,. ~ at the origin and with the outer solution at¢*. For the
figures presented here, mismatch errors at these two points

APPENDIX: NUMERICAL EVALUATION were of order 10°. Moreover, direct simulation_, for a subset
OF THE STEADY STATE of parameter values, of the SDE E) using Euler’s
method produced good agreement with the analytical curves,
The numerical usefulness of E(.3) is tempered by the but with substantially longer computation tinfeot shown;
fact that it contains quotients of large valued functions. Thuspumerical solution appeared convergent ritas 10 4).

(A2)
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