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Evaluation of entrainment of a nonlinear neural oscillator to white noise

Jason Ritt*
McGovern Institute for Brain Research, MIT E25-414, Cambridge, Massachusetts 02139, USA

~Received 23 July 2003; published 29 October 2003!

The Lyapunov exponent for a one-dimensional neural oscillator model, the theta neuron, is computed for
white noise forcing, using the steady-state solution to the associated Fokker-Planck equation. The latter is
mildly singular, due to the nature of the multiplicative input. In agreement with previous results with similar
models, the exponent is negative for all forcing amplitudes, but here it is shown to be small, relative to that for
periodic drive, in a range of forcing strengths. Thus the synchronization of an ensemble of independent neurons
receiving common but random input can be slow. Moreover, this implies that aperiodic input may be subop-
timal, in some contexts, for preserving the reliability of fine spike timing, a potentially important component of
the neural ‘‘code.’’
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I. INTRODUCTION

Cortical neuronsin vivo receive thousands of synaptic in
puts, the sum of which resembles a white or low-pass filte
‘‘noise’’ input @1–3#. It is now well established that neuron
can entrain to such inputs, in the sense that, if an ident
realization of the input is repeatedly applied, the result
neural output~spike trains or membrane potential time s
ries! is nearly identical from trial to trial@3–9#. The degree
of similarity between trials, specifically in the timing of ac
tion potentials, is called the spike timereliability. Due to
intrinsic ~e.g., channel! noise, reliability is typically poor in
the absence of input fluctuations@3,7,10#.

In most theoretical investigations of reliability, each tri
is modeled as the response of a different neuron in an
coupled ensemble of identical neurons receiving a global
put @11–15#. The ensemble evolves in a common~nonauto-
nomous! phase space, and reliable firing is equivalent
synchronization of the ensemble. It has been argued tha
liable spike responses to broadband ‘‘aperiodic’’ inputs
generic, in both excitable and oscillatory neuron models,
do not depend on the fine details of the driving signal or
neural kinetics@12,15,16#. Indeed, under fairly mild assump
tions, all one-dimensional stochastic differential equatio
are stable in the sense of having a negative Lyapunov e
nent~@17#, Sec. 9.2.2!, which suggests that the solutions typ
cally converge asymptotically to a small number of distin
solutions@12#. A similar result has been found numerically
two dimensions, although a small subset of parameters le
chaotic behavior@15#.

However, for neural oscillators it is well known that p
riodic inputs must be tuned to appropriate frequencies
entrainment~hence reliability! to occur. Further,@7,9# show,
both in experiments onAplysiamotoneurons and simulation
of an integrate and fire model, that reliability under a broa
band input can be substantially reduced when that inpu
notch filtered around the oscillator frequency, a behav
they termedreliability resonance. Importantly, the effect of
reliability resonance is amplitude dependent. Similar res
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have been observed in cortical slices@8#. Thus, reports of the
generality of aperiodic response reliability, while not inco
rect, may overstate the importance of this result to biophy
cal function, and miss frequency dependent mechanisms
could affect reliable responses in functional networ
@9,11,13#. A better understanding of the interaction betwe
the input spectrum and the neural kinetics depends in par
quantitative comparisons of the efficacy of different inpu
including broadband and rhythmic signals, in driving reliab
responses.

This paper determines the rate of ensemble synchron
tion, via the Lyapunov exponent~LE!, for a one-dimensiona
neural oscillator model with broadband input. The expon
is always nonpositive, in agreement with previous stud
but can be small compared to that for periodic forcing. Th
in some regimes input coherence may be important to ind
reliable spike timing.

II. THE THETA NEURON

The theta neuron equation,

du

dt
512cos~u!1@11cos~u!#I app ~1!

is a normal form for a saddle node on a circle bifurcation,
which a large class of conductance based neural models~so
called type I! can be reduced@18–20#. u represents the phas
of the voltage and conductance trajectory during a sin
spike cycle, andI app, which is assumed small but not nece
sarily constant, is the total input~e.g., synaptic! current. By
construction, the neuron ‘‘spikes’’ wheneveru5p. When
I app.0 the neuron is oscillatory, with periodp/AI app ~when
I app is constant!. Otherwise the neuron is excitable, with
stable/unstable pair of fixed points around the origin@19#.

For our purposes, two important physiological propert
captured in the model are~i! nonuniform motion, consisting
of slow motion aroundu50 and fast spiking asu passes
throughp, and~ii ! a decreasing influence of the input as t
neuron reaches the spike~at u56p, the term includingI app
equals zero!. This latter behavior corresponds to the physic
©2003 The American Physical Society15-1
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notion that, during a spike, the high conductance of the s
ing currents completely overwhelms the input@18,19#.

This paper focuses on the oscillatory regime. The osci
tory theta neuron is similar to the active rotator mod
@12,21#; a key difference is the multiplicative input, whic
captures the substantially reduced input efficacy during
high conductance state of the spike. We imagine a cell
ceiving a mixture of excitatory and inhibitory synaptic cu
rents, with a net depolarizing effect leading to oscillatio
i.e., I app has a positive mean~in typical experiments@3,7,9#,
a fluctuating current riding a positive dc bias is injected
an electrode!. In the idealized limit of a large number o
independent but smooth synaptic currents@2,3#, I appbecomes
‘‘white forcing,’’ interpreted in the sense of Stratonovic
@22#. The input is thusI app5u1s+dW where u.0 is the
mean,+dW is the~Stratonovich! white noise differential, and
s is the forcing amplitude. Equation 1 becomes the stoch
tic differential equation~SDE!

du5 f ~u!dt1g~u!+dW, ~2!

where

f ~u!512cos~u!1@11cos~u!#u, ~3a!

g~u!5@11cos~u!#s. ~3b!

We define thenatural periodasTN[p/Au, i.e., the period
whens50.

We will utilize the probability densityr(u,t) of oscillator
phases, which is governed by the Fokker-Planck equation
the steady state,r gives the distribution both over all initia
phases and over all realizations of the input. Informat
about the distribution of solutions with different initial con
ditions but forced by the same realization of the input is th
derived from the Lyapunov exponent~see below! @17#. To
find the Fokker-Planck equation associated with Eq.~2!, it is
first necessary to write the SDE in Itoˆ form @22#,

du5S f ~u!1
1

2
g~u!g8~u! Ddt1g~u!dW, ~4!

where the prime indicates differentiation with respect tou,
and the stochastic differentialdW is of Itô type. The corre-
sponding Fokker-Plank equation is then@22#

]r

]t
52

]

]u H S f 1
1

2
gg8D rJ 1

1

2

]2

]u2
$g2r%. ~5!

Under general conditions~includings.0) every solution of
this second order parabolic equation tends to a unique st
state, given by setting]r/]t50. Note, however, that the
equation is mildly singular@g(6p)50# due to the spike
nonlinearity.

III. LYAPUNOV EXPONENT

A. The Fokker-Plank steady state

We first derive an integral expression for the steady-s
solution r to the Fokker-Plank equation. While the gene
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approach is standard@17,22#, the singular point of Eq.~5! at
the spike introduces some modifications. In the next sec
we compute the LE usingr.

To find the steady state, consider

052
d

du H S f 1
1

2
gg8D rJ 1

1

2

d2

du2
$g2r% ~6!

on the open intervalI[(2p,p) on which the equation is
nonsingular, along with the conditions~i! limu→2pr(u)
5 limu→pr(u) and ~ii ! * Ir51. The first~boundary! condi-
tion restricts us to periodic solutions, and the second norm
izes the solution to a probability density.

Integrating once yields

g2

2

dr

du
1S 1

2
gg82 f D r5C ~7!

with C to be determined. We defineF ~on I ) via

F~u![E
0

u 2 f ~h!

g2~h!
dh5

2

s2
tanS u

2D F1

3
tan2S u

2D1uG
and the integrating factor as

m~u![
1

g~u!
exp@2F~u!#. ~8!

Direct calculation shows that Eq.~7! is equivalent to

d

du H m
g2

2
rJ 5Cm;

hence

m~u!
g2~u!

2
r~u!5sr01CE

0

u

m~h!dh. ~9!

Above we usedm(0)51/(2s), g(0)52s, and the defini-
tion r(0)[r0 . C andr0 are not independent for the solutio
to satisfy the boundary condition. Suppose for the remain
that r0 is fixed ~at an as yet unknown value such that t
solution has unit area!; it remains to determine the corre
spondingC.

Under the change of variablesz5tan(u/2) on 2p,u
,p, Eq. ~8! becomes

m̃~z!5
z211

2s
expF2

2

s2
zS 1

3
z21uD G ~10!

on 2`,z,`. Clearly, limu→2pm5 limz→2`m̃5` and
limu→pm5 limz→`m̃50. This latter limit further implies that
the integral ofm converges at the right end of the interval,
we define

E
0

p

m~h!dh[M.0. ~11!
5-2
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Now consider the limitu→p in the solution Eq.~9!. Assum-
ing thatr is bounded, the left hand side goes to zero, wh
is a direct consequence of the spike singularity. Therefore
the equation to hold on all ofI it is necessary that

C52
sr0

M
, ~12!

and the only bounded steady-state solution onI is

r~u!5
2sr0

M

E
u

p

m~h!dh

g2~u!m~u!
, 2p,u,p. ~13!

In this expression, the integral limits have changed after s
plification using the definition ofM.

Since the derivation so far has invoked only the bound
ness ofr, it should be checked that this solution in fa
approaches finite values at the two end points, and that t
values are equal. For convenience, we rescale the solutio
r (u)5Mr(u)/(2sr0) before taking the limits. Then from
Eq. ~13!

lim
u→p

r ~u!5 lim
u→p

21

gg822 f
5

1

4
.

The first equality uses the definition ofF, after application of
L’Hôpital’s rule, and the second is an explicit evaluation
the resulting limit. A similar calculation shows tha
limu→2pr (u)51/4, so, in particular,r (2p)5r (p) in the
limit. Returning to the original scaling, the definition

r~2p![
sr0

2M
[r~p! ~14!

along with Eq.~13! yields a continuous, 2p-periodic solu-
tion to the Fokker-Planck equation.

As an aside, sinceu5p is the condition for the neuron to
emit a spike, Eq.~14! also gives the steady-state mean sp
rate of the neuron, althoughM andr0 depend nontrivially on
u ands. Recently, Lindneret al. @20# used first passage tim
arguments to calculate the mean and coefficient of varia
~the standard deviation divided by the mean! of the inter-
spike interval distribution for this model. Future work com
bining these alternative expressions of the spike rate co
simplify the analytic representation of the steady-state ph
density.

B. LE calculation

To find the Lyapunov exponent~following @17#, p. 474! of
the stochastic forced theta neuron Eq.~2!, consider its linear-
ization

dv5 f 8„u~ t !…vdt1g8„u~ t !…v+dW ~15!

about a fixed solutionu(t). Thenv satisfies
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lnuv~ t !u5 lnuv0u1E
0

t

f 8„u~s!…ds1E
0

t

g8„u~s!…+dWs

5 lnuv0u1E
0

tS f 8„u~s!…1
1

2
g„u~s!…g9„u~s!…Dds

1E
0

t

g8„u~s!…dWs . ~16!

The second equality is the conversion from the Stratonov
(+dW) to the Itô~dW! integral@22#. The average of the fina
Itô integral is zero asg8 is bounded. Thus, using ergodicit
of the system to equate the time average of the first inte
with integration against the steady-stater(u), the LE satis-
fies @17#

lw[ lim
t→`

1

t
lnuv~ t !u5E

2p

p S f 8~h!1
1

2
g~h!g9~h! D r~h!dh.

~17!

Numerical evaluation of this integral provides the LE~see
the Appendix for additional numerical details!.

IV. EFFECT OF FORCING AMPLITUDE

In the absence of forcing fluctuations,s50, the asyn-
chronous steady state is found directly from Eq.~5! as
r(u)5Au/@p f (u)# ~scaled so thatr has unit integral!. By
symmetry~or direct calculation!, Eq.~17! thus shows that the
LE is zero. Indeed, since the neuron is oscillatory, any p
turbation to the asynchronous density oscillates at the nat
period, indicating neutral stability.

A. LE for sinusoidal forcing

To provide a baseline for comparison whens.0, we
numerically compute the LE for an ensemble entrained
sinusoidal forcing at the natural period~to our knowledge
this has not been reported analytically, although it is clos
related to the well-understood Hill equation@18#!. Consider
Eq. ~1! with I app5u1sA2 sin(2pt/TN), where TN is the
natural period. The factorA2 normalizes the input varianc
to be s2. As above, the solution to the linearization of E
~1! aboutu(t) is

lnuv~ t !u5 lnuv0u1E
0

t

f̃ „u~s!,s…ds, ~18!

where f̃ (u,t)5@12I app(t)#sin(u). Supposeu(t) is the stable
1:1 phase-locked solution. Then, using periodicity, the LE

lp5 lim
t→`

1

t
lnuv~ t !u5

1

TN
E

0

TN
f̃ „u~s!,s…ds. ~19!

Figure 1~gray curve! showslp computed across a range o
s. At first the LE decreases with increasings, indicating
better entrainment. For highers the LE returns to zero, the
1:1 solution loses stability, and more complicated locki
patterns occur. Note thatI app is strictly positive only fors
5-3
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JASON RITT PHYSICAL REVIEW E 68, 041915 ~2003!
,u/A2'0.007. Above this value the forcing could be co
sidered ‘‘strong,’’ as it transiently introduces fixed points
the model, Eq.~1!.

B. LE for white forcing

For the white-forced theta neuron, the peak in the stea
state densityr shifts to the left of the origin~Fig. 2! as s
increases, which we explain as follows. For increasing in
fluctuation, the average frequency of the theta neuron
creases~not shown!, as the white input assists the neuron
escaping the slow region around the saddle node ghost a
origin @23#. This in turn increases the probability flow pa
the spike (u5p) and reinjects probability at negativeu.
This process is asymmetric, because the escape of a ne
in the interval @2p,0# can be significantly delayed by
more negative input, but a neuron that has begun to s
will continue throughu5p independent of the input. Heu
ristically, most of the ensemble is ‘‘waiting’’ to get past th
origin, and neurons that make it past the saddle node g
almost immediately return to waiting, thereby shifting t
density peak into the ‘‘repolarization’’ interval@2p,0#.
While a similar behavior has been inferred in phase mod
before@12#, the author is not aware of a previous attempt
explain its cause.

For u in @2p,0#, the divergence of the SDE is negativ
~that is,d/du(du/dt),0). The shift of the ensemble densi
thus induces a contraction of nearby solutions. To quan
the contraction, Eq.~17! is used to numerically compute th

FIG. 1. The Lyapunov exponent for the theta model with sin
soidal (lp , gray! and white (lw , black! inputs, as a function of
forcing amplitude. The mean inputu50.01.

FIG. 2. Steady-state densitiesr for s50 ~black!, 0.1 ~light
gray!, and 0.3~dark gray!. The mean inputu50.01.
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LE lw for a range of forcing strengthss, shown in Fig. 1
~black curve!. As expected, the exponent is negative, su
gesting solutions asymptotically approach each other, an
monotonically decreasing, so that stronger forcing results
faster~more stable! synchronization. However, ass goes to
zero, the curve oflw approaches tangentially to thes axis,
so that synchronization is weak for a nontrivial range of fo
ing amplitude.

C. Comparison of forcing types

The fair comparison of a sinusoid input with a white si
nal is a subtle question. A usual control is to match the fl
tuation power~time average of the squared input fluctu
tions! between different input types@7–9#. For a stationary
process the power equals the variance around any fixed
point. However,+dW is a generalized process, and the va
ance at each time point is infinite@22#. Indeed, the term
‘‘white’’ denotes that the signal contains equal~positive! en-
ergy at all frequencies; since the power is equal to the in
gral of the spectrum, the power is also infinite@22#. Thus,
although the white signal has an intensitys, it is not obvious
how this number should be scaled to compare to an in
with finite power.

Recall that white forcing arose as an idealization of
broadband input current due to the summation of many
dependent inputs. In practice this input will be band limit
and of finite power. The approximation used here is va
when the highest frequency in the input signal is well abo
the fastest time scale of the system, and implicit in this
proach is a scaling that depends in a complicated way on
system being stimulated@9,22,24#. Through such a scaling
we could compare the magnitude oflp(s) directly with a

modified white forced LE,l̃w(s)[lw(as), wherea is sys-
tem dependent.

However, an important qualitative aspect of Fig. 1 pers
under any reasonable scale. In particular, because the s
of lw approaches zero ass→0, at small forcings we mus

havel̃w.lp . Further, becausel̃w is monotonically decreas
ing but lp is not, we also have that, at sufficiently highs,

l̃w,lp . Thus there is an amplitude dependent transition
tween greater reliability to periodic input~at the natural fre-
quency! for low s, and greater reliability to broadband inpu
at highs, as measured by the LE. This behavior is especia
interesting in comparison with the experimental demons
tion of resonance reliability~that is, frequency dependence
reliability! only for a range of forcing amplitudes@7,9#.

We note that for high-amplitude white forcing, cohere
oscillations are lost and the neuron approaches a refrac
Poisson process~unpublished; see also@20,25#!. For ex-
ample, at the highests in Fig. 1, s50.1, the coefficient of
variation of the interspike interval distribution is approx
mately 0.5, indicating fairly irregular spike timing. The plo
ted range ofs extends into ‘‘strong’’ white forcing@20# ~and
strong sinusoidal forcing, given the loss of stability of 1
entrainment!, and the two LE curves should be qualitative
comparable.

-
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D. Time evolution of synchronization

As a further example of the greater efficacy of sinusoi
forcing at low amplitudes, Fig. 3 demonstrates the neu
response to three different forcing regimes, withs
50.0025. To make the spike times more apparent, we p
2cos@u(t)# for each neuron@25#; this function is near21
around rest (u50), and is11 at the spike (u5p). Figure
3, top, shows two neurons with near-antiphase initial con
tions receiving a common sinusoid input at the natural f
quency~as in Sec. IV A!. They quickly approach a commo
solution. The light gray curve in Fig. 3, bottom, shows t
ensemble average over 50 neurons with asynchronous in
conditions. For an asynchronous ensemble the average
constant,̂ 2cos(u)&;20.82 ~the mean value of2cos@u(t)#
for a single unforced oscillator!. However, under the forcing
the ensemble average quickly approaches the wave form
single solution, showing synchronization of the entire e
semble.

FIG. 3. Top. Two example solutions, with near-antiphase ini
conditions, of the theta neuron weakly forced by a sinusoid at
natural frequency. Middle. The same but with a single realization
white forcing. Bottom. Ensemble average of 50 solutions star
from an asynchronous~splay! state, for three different inputs: whit
forcing ~black!, sinusoid at the natural periodTN ~light gray!, and
sinusoid with periodTN/0.87~dark gray!. Solutions were computed
via the Euler method for Eq.~1! or Eq. ~4! with u50.01, s
50.0025, and time stepDt51024.
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The dark gray curve of Fig. 3, bottom, shows the e
semble average when the forcing is replaced by a sinu
with periodTN/0.87, chosen to lie just outside the 1:1 Arno
tongue. Individual solutions are quasiperiodic, and the
semble average shows beating. Thus, although there are
time epochs in which the ensemble is nearly clustered~e.g.,
around t5150), further input disrupts these clusters a
there is no asymptotic approach to a common solution.

White forcing shows a combination of these behaviors.
this forcing amplitude, changes in relative phase are not
parent in individual neurons~Fig. 3, middle!. Some tendency
toward clustering is visible in the ensemble~Fig. 3, bottom,
black curve!, and since the LE is negative, the ensemble w
eventually approach a common solution ast→`. However,
it does so in a biased random walk fashion, with epochs
increased clustering~e.g., aroundt5300) interspersed with
epochs of desynchronization~e.g., aroundt5450). A de-
tailed examination of the synchronization dynamics sho
that the negativity of the LE is due to rare but highly sy
chronizing epochs outweighing a smaller unbiased walk
the level of synchronization@13#. This behavior is similar to
that observed in phase oscillators driven by a sinusoidal
put with slow, random frequency modulation@11#. The im-
portant observation is that the nervous system often oper
on time scales of a few spikes, so that, independent of
LE, the fluctuation in the degree of synchronization cou
also be functionally relevant. In contrast to the monoto
approach to synchrony under sinusoidal input, white forc
can in fact desynchronize the ensemble on short time sca

V. CONCLUSION

Motivated by the phenomenon of neural response relia
ity, we have modeled a simple neural oscillator forced b
broadband input. We have not explicitly modeled the red
tion in reliability from intrinsic noise, e.g., due to ion chan
nel fluctuations@10,16#. We instead focused on the dynam
cal stability of the nonautonomous neuron with input, a
expect synchronization to persist under small intrinsic no
However, because the effect of noise can be state depen
@10#, the extension of our analysis to models with intrins
noise could reveal interesting behaviors.

As in the case of scalar equations on the real line~@17#, p.
473! and additive noise on the circle~@17#, p. 398!, @12#,
white forcing here induces a negative LE, and thus almos
solutions should converge asymptotically. In@12#, a Poincare´
map is used to show directly that the negative LE leads
synchronization in an active rotator with additive white for
ing. An almost identical argument holds for the theta neu
in this paper. However,@12# relied on general results in@17#
without actually determining the steady-state phase distr
tion, the magnitude of the LE, or the time course of synch
nization for reasonable forcing amplitudes. By calculati
the steady-state distribution to get a semianalytic expres
for the LE, it is shown here that the LE remains small, re
tive to periodic input, for a range of amplitudes. Thus,
though the system may ultimately synchronize under wh
forcing, it may take a physiologically untenable amount
time to do so, and other inputs may be more effective.
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JASON RITT PHYSICAL REVIEW E 68, 041915 ~2003!
particular, for low forcing strengths the spectrum of the inp
may dominate entrainment behavior@7,9#.

Periodic inputs at frequencies not harmonically related
the natural period result in transient and partial clustering
an initially asynchronous ensemble~as in Fig. 3, bottom,
dark gray!; this is the ensemble level manifestation of t
classical result that individual solutions are quasiperiodic
neutrally stable. In this case, even small intrinsic noise wo
accumulate and lead to unreliable spike times@16#. Even
when solutions are entrained, an argument for the importa
of aperiodicity in inducing reliable responses is that high
order locking in periodically forced systems can obstruct
semble synchronization@14,16#. For example, under stabl
2:1 phase locking, an initially asynchronous ensemble sp
into two clusters, separated in time by one input period.
though information about the input is preserved at the po
lation level, the spike times for a single neuron depend
initial conditions ~and on noise mediated jumps betwe
clusters! and hence are unreliable@16#. However, especially
for low forcing strengths, the most common form of pha
locking is 1:1, in which multiple clusters do not exist.
higher-dimensional models, moreover, even aperiodic inp
can lead to multiple clustering~unpublished; and, e.g., th
bistable regime of@15#!, a behavior that is observed expe
mentally @3,4#. A full understanding of reliability requires
conditions not only on the input, but also on the dynami
details of the neural model. This includes an examination
the temporal fluctuation in reliability, as is observed for bo
anharmonic sinusoidal forcing and white forcing~Fig. 3, bot-
tom; see also@13#!.

In other work with the theta neuron model, we found th
broadband inputs filtered at the natural frequency do not p
duce reliable spiking@13#, in more direct correspondence
the results of@7,9#. As shown in this paper by the compariso
of broadband with periodic inputs, temporal structure in
input can be a major determinant of reliability for system
with a defined time scale~e.g., the oscillation period!.

ACKNOWLEDGMENTS

The author thanks Nancy Kopell, Bard Ermentrout, Jo
Rinzel, Mark Andermann, and Margaret Beck for spirit
discussions and helpful comments. The author was suppo
by the Burroughs-Wellcome Fund Program in Mathemati
and Computational Neuroscience at Boston University.

APPENDIX: NUMERICAL EVALUATION
OF THE STEADY STATE

The numerical usefulness of Eq.~13! is tempered by the
fact that it contains quotients of large valued functions. Th
k
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although the final value ofr may be small, the intermediat
steps are numerically out of machine range@the problem per-
sists under the change of coordinatesz5tan(u/2)]. It is
easier to numerically solve the first order differential equ
tion Eq. ~7!, but C must be chosen correctly for this firs
order solution to match the boundary conditions of the ori
nal second order problem Eq.~6!. The crucial observation is
thatC was determined@Eq. ~12!# during the derivation of the
analytic solution, and moreover can be calculated direc
from the theta neuron vector field~to get M ) and the arbi-
trary choice of scalingr051. After a solution is computed i
can be normalized to have unit integral.

M5*0
pm is numerically evaluated first, to high precisio

~note thatm goes rapidly to zero for positiveu). We then
rearrange Eq.~7! as

dr

du
5

2

g2 F S f 2
1

2
g

dg

du D r2
sr0

M G[G~u!S A~u!r2
sr0

M D
~A1!

on I 5(2p,p). SinceG(u)A(u).0 for u, s, andu of in-
terest, integration of Eq.~A1! is stable when integrated back
ward ~decreasingu). The prefactorG goes rapidly to infinity
at both edges of the interval, making even the backw
~stable! integration ill posed for most numerical solver
However, whenG is large,r is approximately equal to the
algebraic value obtained by setting the parenthetical term
the right hand side of Eq.~A1! to zero (dr/du is of order 1!.

We thus split I into ‘‘inner’’ and ‘‘outer’’ intervals, by
choosing a positive valueu* for which G(u* )@1 @specifi-
cally G(u* )510G(0)55/s2]. The inner regionI in is de-
fined by uuu,u* , and the outer regionI out is the comple-
ment. OnI out, Eq. ~A1! yields the approximation

r~u!5
sr0

M @ f ~u!2g~u!g8~u!/2#
. ~A2!

Note that this expression agrees with the earlier determi
values Eq.~14! at the end points. We numerically integrate
the ordinary differential equation Eq.~A1! backward from
u* to 2u* , using the starting value given by the outer a
proximation. As a self-consistency check, the integrated
lution ~before normalization! should agree both withr051
at the origin and with the outer solution at2u* . For the
figures presented here, mismatch errors at these two po
were of order 1025. Moreover, direct simulation, for a subse
of parameter values, of the SDE Eq.~4! using Euler’s
method produced good agreement with the analytical cur
but with substantially longer computation time~not shown;
numerical solution appeared convergent neardt51024).
,
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